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There have been extensive previous laboratory studies of thermal convection in a vertical
cylindrical annulus of fluid that rotates about its axis with angular velocity £2 (say) with
respect to an inertial frame and is subject to an axisymmetric horizontal temperature
gradient, as well as associated theoretical and numerical work. The relative flow
produced by concomitant buoyancy forces is strongly influenced by Coriolis forces,
which give rise to azimuthal circulations and promote, through the process of
“baroclinic instability”, regimes of non-axi ic sloping ion which can be
spatially and Lc'mporally regular or irregular (“‘chaotic geostrophic turbulence™). It is
also known from previous work that such flows are changed dramatically by the
presence of a thin rigid impermeable radial bamu blocking the cross-section ol' the
annulus, and capable of supporting a net and 1 net
azimuthal temperature gradient within the fluid. 'I“hc prcsc'noc of the barrier can thus
render convective heat transport across the fluid annulus (as measured by the Nusselt
number, Mu) virtually independent of £2 (as d by the so-called Ekman or Taylor
number) and dependent only on the Grashof number, G. The present study reports
further systematic determinations of heat transport and of velor:ny and temperature
fields in the presence of a radial barrier, with emphasis on the £-d d of the
crucially-important net azimuthal lemperalure gradient supported by the barrier and the
physical inter ion of that d d
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1. INTRODUCTION

The extent to which hydrodynamical motion in a fluid system is
effected by the general rotation of the whole system with angular
velocity £} relative to an inertial rame depends not only on the
magnitude of £ but also inter alia on the shape and topological
characteristics of the fluid container. Hide (see Appendix) considered
the case when € is independent of time 1, the fluid density p (in general
a [unction of r and position r) is constant (and equal to g), and
inquired whether there were any circumstances in which the Eulerian
flow velocity u(r, ) was independent of £2 and therefore the same when
Q£ 0 as when © = 0 [i.e. up(r,1)]. He concluded that this situation
could arise in a simply-connected system, such as the differentially
heated rotating fluid annulus described in this paper. In this case, when
270 the fluid velocity may remain equal to w; because of the
appearance of an additional dynamic pressure field p, (r, €2, ¢) which
satisfies

2pQ Xuy = =Vpy, (1)

where p(r, {2, 1) = polr, 1) + p, (r, 12, 1) so that p, is the pressure field in
the absence of rotation and p, arises as a consequence of rotational
effects.

In the case of buoyancy-driven flows produced by the action of
gravity, g on density gradients Vp (maintained, for example, by
differential heating, as in planetary atmospheres) one might expect
advective processes such as heat transfer to be strongly influenced by
the shape and topology of the container when {2 (= |€}) is large. The
investigation of such effects bears not only on the study of basic
hydrodynamical processes in rotating fluids but also in the interpreta-
tion of observations of flows in natural rotating fluid systems such as
the atmosphere and oceans. For it is a remarkable circumstance that
the essential features of large-scale flows in atmospheres and oceans
can be reproduced and studied on the much smaller scale of the
laboratory (see e.g. Hide, 1977). In the present paper we shall be
concerned with thermal convection in a rotating fluid annulus (see e.g.
Hide and Mason, 1975) under conditions when the centripetal
acceleration £2 X (€2 X r) is very much smaller in magnitude than the
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acceleration due to gravity g. In the first studies of such a system (Hide
1953, 1958), where the main objective was the delineation of various
flow regimes and their dynamical characteristics (including non-
uniqueness, chaotic and other essentially non-linear behaviour), and
temperature fields, more or less incidental determinations were made
of the dependence of radial heat transfer on £2 and the other impressed
conditions. The Nusselt Number
_ Hln(b/a)

Nu = SfATd @
(where H is the total heat transport by the fluid through the annulus,
and the other quantities are defined in Tab. I) is a dimensionless
measure of the total heat transfer (see e.g. Tritton, 1988; Kreith, 1968).
Nu generally decreases with increasing 2, more rapidly in the
axisymmetric flow regime found at the lowest values of £ covered
by the experiments and in the non-axisymmetric regime of ‘geos-
trophic-turbulence’ found at the highest values, than in the regular
non-axisymmetric flow regime found at intermediate values of £2, in
which the heat transport is more or less constant. A by-product of an
attempt to give a theoretical interpretation of these results was a
conjecture by Hide (see Appendix) that the addition ol a rigid
impermeable radial barrier connecting the inner and outer cylinders of
the annular convection chamber at all levels might result in an f{1-
dependent pressure field ( py) sufficient to render Nu independent of 2
(and equal to its value at 2 = 0). The conjecture was investigated and
confirmed in work by Bowden (1961), using apparatus designed

TABLE 1 Range of experimental parameters

Radius of inner cylinder a 25cm
Radius of outer cylinder [ 8.0 cm
Depth of annular cavity d 14.0 cm
Angular velocity k1] 0.0-5.0 rad-sec™’
Mean fluid temperature T WrC
Applied temperature difference AT 4 or 1FC
Kinematic viscosity of fluid v 1.79 = 1.83 x 107 cosec ™"

Specific heat capacity of fluid c, 384-385)g'eC!
Mean density of fluid il | gem
Expansion cocfficient of fluid I 30x107C!
Thermal conductivity of fluid k 5.18% 107> Weem™'oC!
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specifically for heat transfer measurements. Other work included
studies of the influence of [ull and partial barriers on flow patterns and
on the broad characteristics of the temperature field in the convecting
fluid (Bowden and Eden, 1968 Bless, 1965; Rayer, 1992). Temperature
measurements are particularly important, for they provide inter alia
information about the pressure field (see Appendix) which in the
laboratory studies cannot readily be determined by direct measure-
ments.

Consistent with Hide's proposal, Bowden and Eden (1968) observed
systematic azimuthal temperature gradients which increased in
magnitude with increasing £, and they noticed the formation of
horizontal eddies at the highest values of {2 used in their experiment. In
the present paper we extend these studies with the objective of
clucidating the mechanisms at work; particularly the role of the
horizontal eddies.

2. APPARATUS

The apparatus used to obtain the measurements is essentially the same
as that used by Hignett er al. (1985); Hide e al. (1977) and Hide and
Mason (1975). It consists of two coaxial cylinders (with radii a and )
arranged so as to form an annular convection chamber, which was
placed on a rotating turntable. The convection chamber was placed so
that its central axis of symmetry coincided with the axis of rotation of
the turntable. The turntable could be rotated with uniform angular
velocity, €2, between 0 and 5 rad.sec™". Fluid filled the cavity between
these cylinders and a thermally insulating horizontal base and rigid lid.

The side walls of the annulus were held at different constant
temperatures, T, (the inner cylinder at r=a) and T, (the outer
cylinder at r = b), so that a radial temperature difference AT=T7;,— T,
with T, > T, was applied across the fluid.

The experiments required that the annulus was fitted with a single
fully blocking thermally insulating perspex radial barrier of thickness
2.5 mm, which blocked the entire radius and depth of the convection
chamber at ¢ = £ m, so that the ¢ = 0 position was located opposite it.

Fluid motions were visualized by a technique involving neutrally
buoyant tracer particles, as described by Jonas and Kent (1979). The
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fluid used was a water-glycerol mixture with a density of p ~1g.cm™'
at 20°C, which was seeded with small neutrally buoyant polystyrene
beads. Horizontal beams of light were used to illuminate the flow field
and thus allow the automatic computer tracking of the beads at a
range of vertically displaced levels in the annulus.

Fluid temperature measurements were made at mid-radius
[r = (a+ b)/2] and mid-depth (z = 0) by an azimuthal array of thirty-
two equally spaced thermocouples. Measurements of the temperature
change in the inner cylinder cooling fluid allowed the total heat
transport through the convection chamber to be determined. The flow-
field temperature data was used as a temporal mean, and all
measurements were made with steady rotational and thermal forcing,
The presence of the radial barrier in the rotating system was generally
associated with a temperature drop across it, which was defined as

&Tﬂ' = Twam _ Tmol,

where 7% was the temperature of the warmest thermocouple in the
ring at any given 2, and 7<% the temperature of the coolest
thermocouple. Separate apparatuses were used for the flow visualisa-
tion and heat transport measurements, these were identical apart from
their instrumentation. The range of fluid properties and other
parameters used in the experiments are given in Table 1.

3. RESULTS WITH AN INSULATING RADIAL BARRIER

The measurements described here were obtained using an annulus with
a flat base and the insulating barrier deseribed in Section 2. Fowlis and
Hide (1965) defined dimensionless parameters

—ayQ?
_ ga&?"dq and _ 4 2a) 0 :
P (b—a) vid

where g is the acceleration due to gravity and the other symbols are
defined in Table 1. The experiments covered the ranges 2.2 x 1072 <
O <00, 0<7< 1.1 x 10°, while eddies were observed for © < 0.4 and
+ = 107, Figure | shows the typical azimuthal temperature variation at
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FIGURE 1 Experimental results showing temperature of ring thermocouple against

imuthal position for three ion rates, §1 = 0.0, 1.9 (or 2.0) and 5.0 rad.sec™', for the
system with constant depth, & = 140 mm and the full thermally insulating barrier. Each
of the scale markings along the horizontal axis shows the location of one of the
thermocouples in the ring. Measurements of lemperature were taken for each
thermocouple in the ring, with a straight line drawn between them as a guide to the
eye. The standard errors were 0.014°C in both cases. The externally applied temperature
differences were (a) AT=4°C, (b) AT 10°C. The AT{11) was defined as the difference
between the maximum and minimum thermocouple ring temperatures [or a given . As
the figures show ATy was generally the temperature difference between one side of the
barrier and the other.

different rotation rates measured by the thermocouple ring at mid-
radius (r =), and mid-height (z = 0) as a function of ¢, T'(F,z = 0;
@, ). The barrier was placed at ¢ = +m. Plots of temperature are given
for three values of (2 for each of the two values of AT used. It can be
seen that 87T (F, z = 0;¢)/8¢ = constant at a given rotation rate,
although temperature perturbations appear at higher values of £ in
some cases. The temperature drop across the barrier, ATy can be seen
to increase with (2.
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The dependence of AT on  can be seen more clearly in Figure 2.
It can be seen that for constant A T, AT increases approximately
linearly with € before levelling off at a value of 20-25% of AT,

The total heat transport of the fluid as expressed by the Nusselt
number (see equation 2), Nu(€) is shown in Figure 3. The results show
that Nu (and therefore the radial heat transport by the fluid) remains
fairly constant with €2, at approximately the same value as when £2=0.
At AT =10°C the largest value of Nu is still only about 7% above the
Q = 0 value.

Typical velocity measurements are shown in Figures 4 to 7.
Figures 4, 5 and 7 show radial motions in opposite directions at the
top and bottom of the annulus, which are consistent with a radial
overturning cell with fluid rising by the warm outer cylinder, and
sinking by the cool inner cylinder. Azimuthal motions can be seen in
Figures 4 and 6; at mid-height there is prograde flow by the outer
cylinder and retrograde flow by the inner cylinder. Figure 6 shows that
the shear of this azimuthal flow tends to increase with £2. There is also
some variation of the azimuthal motion with height. At higher
rotation rates smaller scale eddies were also seen, an example can be
seen in Figure 7(c).
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FIGURE 2 Experimental results showing dependence of ATy on (2, for the system
with a full thermally insulating barrier and depth, d = 140 mm. The externally applied
temperature differences were (a) AT=4°C and (b) AT=10°C.
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FIGURE 3 Experimental results showing the dependence of Nu(f2)/Nu(f2=0) on 12,
for the system with a full thermally insulating radial barrier and depth, d = 140 mm. The
externally applied temperature differences were (a) AT=4°C and (b) AT=10°C.

The observations of the flow can be summarised as follows. The
flow appears to consist of three main components: (1) a radial
overturning, (2) a horizontal circulation (with some vertical structure),
and (3) smaller scale eddies that appeared at higher values of 1. A
temperature drop, ATy was observed across the barrier for all values
of 2#£0. This ATy appears to increase linearly with 2 until its
maximum value of about 25% AT is reached. The total heat
transported by the fluid remained close to the £ = 0 value.

4. DISCUSSION

In this section the aim is to determine whether the mechanism keeping
Nu independent of £2 is that suggested by Hide (see Appendix), namely
that rotation gives rise to a dynamic pressure field ( p) with associated
temperature field (7,) which allows the fluid velocity field to be
unaffected by rotation (i.e. u = uy).

Excluding the smaller scale eddies, the interpretation of the
experimental results can be considerably simplified by regarding the
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FIGURE 4 Horizontal velocity field data from the flow wvisualisation technigque
interpolated onto a regular grid, for the annulus with a full thermally insulating barrier.
The location of the barrier is indicated by the solid line in the 3 o'clock position. The
flow is shown at various heights above the base of the annulus, these are; (1) 124 mm, (b)
97mm, (c) 70mm, (d) 43 mm, and (e} 16 mm. Here 0 = 1.20 rad.sec™', AT = 10.09°C,
8=95x10"", 7=67x10° In cach case the central arrow depicts a velocity of
Imm.sec™'. The depth of the annulus was d = 140 mm.

fluid motions as a superposition of two circulations. These circulations
are shown schematically in Figure 8. The first is a radial overturning
cell, characterised by du/0z = constant. The axis of this circulation lies
antiparallel to ¢ the unit azimuthal vector, and by analogy with the
components of the relative vorticity vector @ = (£, n, ) [where the
components of the position vector r = (r, ¢, z)] shall be denoted the n-
circulation. The second circulation is assumed to be independent of =
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FIGURE 5 The figures show contours of the azimuthal mean of the radial component
of velocity in an (r, =) plane, for the system with an insulating barrier and constant depth,
d = 140 mm. Solid contours represent radially outwards flow and dashed contours,
inwards flow. (1) AT =1000°C, 2=0400 radsec™', © =84, r=75x%10°, (b)
AT = 10.09°C, @ = 1.196 rad.sec ', © = 9.5x 10!, 7 = 6.7x10%and (c) AT = 9.98°C,
0 =3.003 radsec™’, @ = 1.5 10", 7 = 4.2 % 10", In all cases a clear shear of radial
velocity with = can be seen, which is suggestive of radial overturning, In (b) and (c) the
even spacing of the contours with = at mid-radius indicates that dw/ds = constans.
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FIGURE6 The figures show contours of the mean over ¢ of v in an (r, =) plane for the
annulus with a full insulating barrier and depth, = 140 mm. Solid contours represent
prograde flow and dashed contours retrograde flow, The cases (a)—(c) correspond to
those of Figure 5. The flow patterns appear to be quite complex with both radial and
vertical shear. At mid-height (= = 0) the shear of v appears to increase with {1
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Run 241

)

FIGURE 7 The figures show contours of u in a (¢, =) plane for the annulus with a full
insulating barrier. Solid contours represent radially outwards flow and dashed contours,
inwards flow. The cases {a)-(c) correspond 1o those of Figure 5. The contour intervals
are (a) 0.08 mm.sec™", (b) 0.07 mm.sec™' and (c) 0.12 mm.sec™".

and lies in a horizontal plane. Using the same thinking as above it shall
be known as the ¢-circulation. While there is evidence (Fig. 6) that the
{-circulation is not independent of =, the contribution it makes to fluid
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2

FIGURE & Diagram illustrating the simplified flow pattern representing fluid motions

for the results described in Section 4. The velocily measurements when there are no

eddies are represented by the two circulations shown by the arrows. The radial

ovcftummg ccl! which is m,:{cpcndu:m of @, is called the s-circulation, while the

which is ind 1 of = is ealled the {-circulation. These

I a useful simplification to the observed flows when eddies are
absent. From Raytr{l?N}

heat transfer is estimated to be quite small (Section 4.4) and the
assumption represents a useful simplification in the following theory.
Both these circulations contribute to radial motions in the fluid (the
radial motion in the {-circulation being restricted to close to the
barrier), and so may contribute to radial heat transport by the fluid.
By using this simplification the problem of understanding how the
fluid maintains the heat transport reduces to that of finding
mechanisms for the two circulations, and the heat transport
contributions of each of the circulations and the eddies.
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4.1. Heat Transport Considerations

The experiments measured the total heat transported by the fluid,
H = H.ona + Hagy, where Hoona = 2nkATd(In(b/a) is the heat trans-
port through the fluid by conduction, and g, is the heat transport by
advection. Thus the advective heat transport is obtained by subtract-
ing the conductive heat transport from H. The net heat transport
through a surface & by advection is

lqad\'{ﬂQs!:"') = [sﬂﬁv("r¢|3-f)'dsu (3)

hence if the temperature and velocity fields for the fluid motions are
known, H,4, may be calculated from them for comparison with the
experimental results. In practice it was not possible to measure the
entire temperature field, T(r, ¢, z, 1), and the velocity field data was
limited by its accuracy. The approach followed for the temperature
field was to use the limited data available, T(F, z = 0; ¢, 1) with
appropriate approximations. The velocity field data was used to
identily the qualitative features of the flow, so that fluid velocities
could be calculated using appropriate theory, from the more accurate
temperature field data and various experimental parameters. It proved
possible to identify the mechanism for the n-circulation, however the
nature of the {-circulation was such that velocity data had to be used
to estimate its heat transport contribution.

The total advective heat transport is given by (3) where
H,4, = pCpuT and the direction of d8 is normal to the surface S. If
the lid and base of the annulus were perfect insulators, the heat
advected through the annulus (and measured at the inner cylinder)
must have passed through a ecylindrical surface of height d at mid-
radius, F = (@ + b)/2. In this case the normal to the surface is parallel
to F, the unit vector in the r-direction, so that d8 = rrdidz. As
u = (u,v,w), u denotes the radial component of velocity so that the
advective heat transport may be written

HuaolF: 6,2, 1) = [: ' f " o7 8,2 DG 4, 2,0
u(F; ¢, z, )T (F; o, z, t) dzFde.

(4)

228 Q. G. RAYER ¢r al.

Equation (4) is to be integrated between

dhh==(r—g),q=7—¢8,50=-5,5 = (5)
where 2e is the angular thickness of the barrier.

MNext assume the density and specific heat of the fluid to be constant
and equal to 5 and Cp, where the overbar denotes the spatial average
over the fluid. The values for 5 and Cp were taken to be the fluid
density and the specific heat capacity of a water-glycerol solution of
that density at 20°C.

The temperature may be written

ﬂTu(F‘;" =0 ”eH-
2

+T'(F ¢, 2, t)+ T,

TFd,zt)=

AT:(R ¢ =0;1)
d O

where it should be noted that subscripts are not (and shall not be) used
to represent derivatives. By definition AT,(F,z = 0;1) and
AT.(F, & = 0; t) are independent of ¢ and = respectively, though
not of ¢. The AT, and AT. have been formulated so that they
correspond to the (potentially) measurable guantities of the azimuthal
and vertical temperature differences in the fluid. Equation (6) is
formally correct because T (F; ¢, =z, 1) is a completely general function
of ¢, = and +. However the first two terms (linear in ¢ and z) have been
chosen because they represent a useful approximation to the
temperature field in the analysis that follows. In the analysis T should
be defined in the same way as p above, however experimental
constraints meant that in practice the azimuthal average ol T was used
to calculate T when its value was required.

A [urther simplification is made by using

T'(Fd z1) =T (Fz=0;¢,1). (N

This is done because the thermocouple ring data gives T(F, z =

@, 1) so while there is no prospect of being able to calculate any =z
dependence in 7' it might be possible to calculate the ¢ dependence. A
further consideration is that the temperature perturbations that appear
in the thermocouple ring data at certain rotation rates [e.g. see
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Fig. 1(a)] show that there are at least non-linearities in the ¢
dependence of T'. Using the approximations above, assuming that the
fluid is incompressible and making use of the fact that the walls of the
annulus are not porous, (4) may be rewritten

Hyo(P 4, 2, 1) = ﬁf'pf:l —[-‘ u(f o, z, T(7 6, 2, 1) — T)d=Fdo.
(8)

If the flow is split into the two circulations suggested in Section 4
and illustrated in Figure 8, then u(F; ¢, z, 1) may be written

ufy 6,2, 1) = uy (Fr 2, 1) + (P 1) + W' b2, 1),  (9)

where wu,(F;z, 1) represents the radial velocity at r = F due to the 5-
circulation and u(F; ¢, f) is the radial velocity due to the (-circulation.
Then «/'(F; ¢, z, () represents any other flows that may be present in the
fluid, and in particular will include the small scale eddies seen at higher
values of 00, Since u'(F; &, 2, ) is a perfectly general function of ¢, zand 1,
(9) is formally correct. Thus Haa,(F: ¢, z, ) may be written as the sum
of Hy(F; ¢, z,1), the heat advected by the y-circulation; He(F; ¢, z, 1), is
the heat advected by the (-circulation and H'(F;¢,z,¢) is the heat
advected by any other processes, including the eddies. Hence H,, H,
and H' may be defined as

LI _
H,(Figz, £) = ﬁi}.L f y (Fy z, O[T (F, ¢, z, 1) — T)dzrFde,
(10)
L]
He (¢, 2,01) Eﬁf},j f ue (F; &, 1)[T(F; ¢, 2, €) — T)dzFdo,
V2
(1)
and

wEen0=0G [ [ " (7 ¢z, O[T 6,7, 1) — T)dzrdg.

& J=
(12)
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Each of these terms is discussed below. In the case of the »-
circulation it has been possible to propose a mechanism, so that an
expression for i, (7 z,¢) can be derived. The measurements described
in the present paper did not indicate a mechanism to account for H,
and H' and so only their advective heat transport contributions are
discussed (however see Rayer, 1994 and Section 4.4 for a possible
explanation of the mechanism lor the (-circulation).

4.2. Suggested mechanism for the s-circulation

Following Hide's suggestion (see Appendix), the approximately linear
dependence of u on z shown in Figure 5 and the appearance of a
temperature drop across the barrier suggest that u,(F;z,1) may be
governed by a balance between the Coriolis force and an azimuthal
pressure gradient supported by the barrier. As the azimuthal pressure
gradient arises from rotational effects in the fluid, equation (1) applies.
In this case the equation for hydrostatic balance
%%m —og(T-T)+g

(where 5 and T are the mean fluid density and temperature, and p is
the pressure) may be used to eliminate p from equation (1). Thus
following the notation of Section 1, where subscript *0" refers to the
values of u,p, T when ¢ =0, and subscript *1" to the additional
components of u, p, T which arise from rotational effects (so that when
Q#£0,u=uw +uy, T=Ty+ T, etc.), and using #, = —aT, gives

Bily gy o, BE BT g -
5z Bo =)™ —5a o0 (R éz0).
Integration then yields
. - ar .
o(F; .2, 1) z%."; / a—f;{r; b2, 0)d= + uc(F; 6, 1),

where u.(F; ¢, 1) is the function of integration. Since 8Ty/d¢ = 0 any ¢-
dependence in T arises because of T, thus 8T/8¢ = 8T,/0¢ so that
using (6) and (7), and expressing u, as the sum of & (F; @, 1) (which is
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linear in ¢) and i (F; ¢, f) (which is a completely general function of ¢)
means that u(F; ¢, z, r} can be rewritten
__ﬂj ATu(F,z=0;1)

luo (F5 &, 2, 1) d= + 1i(F; b, 1)

~20F 2
- (13)
207 : % (F,z=0;¢,1)dz + a(F; ¢, I)]
where the minus sign has been removed by considering |ug|, its effect

being to indicate that heat advection was radially inwards, towards the
centre of the annulus. Since we are looking for flows in which
u(F; o, z,t) = wg(F; ¢, z,1) comparison with (9), noticing that the first
term on the right-hand side of (13) is a function of (¥, z, f) shows that

Ity (: 2, 1) z%l% (Fz = 0; 1) dz. (14)
In other words the mechanism of the s-circulation is that ol a radial
geostrophic overturning cell. Similarly the second term depends on
(¥, 1), so that i (F; ¢, 1) is uc(F; ¢, t), while the final term (in square
brackets) expresses u'(F;¢,z,t). The implication is that when
(= ti+ @) and @T"[9p = 0, ug = uy.

Now f,(F; ¢, z, t) can be obtained by substituting (14) and (6) into
(10), and integrating over = and ¢, using the limits in (5). Since the
half-angular thickness ol the barrier £ < m il can be neglected, also
since there was no data available for AT. (F,¢ = 0;1), the approxima-
tion was made that AT, = AT. The work of Hide and Mason (1975)
tended to suggest that AT.~(1/2) AT for unblocked annulus flows,
thus the assumption that AT.=AT (required for the analysis that
follows) suggests that an increased vertical temperature gradient in the
fluid arises as one on the effects of the barrier on the flow. Further,
putting AT, = ATy means that H, (7; 7) can now be expressed only in
terms of experimental parameters and fluid properties:

pCreaATATd?

240 (13)

H.(F 1) =

If it is possible to find a region of parameter space where the -
circulation is the primary cause of heat advection in the system, then it
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should be possible to test the result of (15) explicitly. If such a region
can be found then in it, Hygy=H, and wg=u, so that (1) is
approximately satisfied and since w=suy then Nu(f2£0)=Nu (2 = 0)
in agreement with Hide's conjecture.

4.3. Testing the Theory for the w-Circulation

If heat advection by small scale eddies forms the main contribution
to H'(Fi¢,z,1), then at values of 2 where no eddies form
(2 < 1.2rad.sec™ "), H'(F; ¢,2,0) = 0. Also Figure 6 suggests that the
(-circulation is weakest at small £2. Thereflore it is possible to make the
hypothesis that at small €, the n-circulation dominates the heat
advection, so that

Huay (F; ¢, 2, 1) = Hy(7; 1)

If this is the case, then by (15) we have

pC,gaATgATd?
HoalF; 1) = 22 (16)

Rearranging (16) suggests defining the quantity

_ 240H(F 1)
* T pCgalTsATdY
Thus when A, =1, heat advection is consistent with a radial
geostrophic overturning satisfying Hide's conjecture. Figure 9 shows
plots of A, against £ for the two values of A T used in the experiments.
It can be seen that for @ < 3.0 rad. sec™ ', when AT = 4°C, A, =~ 1.15,
A similar value is found for AT = 10°C, but over a larger range of 1.
Only at quite large rotation rates in Figure 9(a) does 4, deviate
significantly from unity, which is to be expected as the heat advection
from the (-circulation and the eddies become more important at
higher £1. This deviation of A, from unity corresponds to regions of
parameter space where u  wy and Hide's conjecture no longer applies.
The interpretation of 4, can be assisted by noticing that A.= H.,4,/H,.

This result agrees closely with the hypothesis made above, namely
that only the n-circulation makes a significant contribution to the heat
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FIGURE 9 Plots of the dimensionless quantity A, (see text) against (! for the system
with @ full thermally insulating barrier and depth & = 140 mm. (a) AT =4°C, 4,
appears to be of order unity for £ less than about 3.0 rad.sec™ and then increases fuirly
linearly with £2 at higher rotation rates. (b) AT = 10°C, A. remains of order unity over
the range of (1 shown.

advection at low rotation rates (£ < 3.0 rad.sec™'), and provides
strong evidence that (15) correctly describes heat advection by the
n-circulation.

The simple linear dependence of 4, on £ for higher rotation rates in
Figure 9(a) allows A to be expressed empirically as

A7' = AMin(l, Rp/R), (17)

where the function ‘Min(x, »)" is defined as the smaller of the two
quantities x and y, and
_ VegaAT
Rp= 5" (18)
Now Rp can be regarded as an estimate of the Rossby radius of
deformation for the fluid. In this case we can write

_ 24QH,4,(F; )Min(1, Rp/R)

Y(r 9, 1) 2C, gaATd®

A, (19)

234 Q. G. RAYER ¢1 al.

where it is to be expected that Y= A Ty Figure 10 shows plots of
Y(F;£1, 1) against ATy, where 4~ 1 and R~1cm. It can be seen that
there is almost complete agreement to within the accuracy of the error
bars. Thus Y (F; €2, 1) in (19) provides a very good estimate of AT il
H,4, is known, or vice-versa.

A further test for the mechanism for the 7-circulation can be seen
from (14). By substituting ATg for AT, in (14) and considering Figure
2 it can be seen that while ATz (), equation (14) predicts that
1y (F: 2, 1) should be independent of £2; up to about 3.0 rad. sec™" in the
AT =4°C case, and for a greater range when AT = 10°C. This
observation is supported by Figure 5 where this does indeed appear to
be the case and closer examination of fluid velocities showed that this
was true, to the accuracy of the measurements: a further piece of
evidence that (14) correctly describes u,(F; z, 1).

4.4. Heat Advection by the {-Circulation

Equation (11) gives the heat advection by the (-circulation,
H(Fi¢,z,1). Rayer (1994) has provided evidence that the {-circulation
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FIGURE 10 Plots of the quantity ¥ against experimental measurements of A Ty, for
the system with a full thermally insulating barrier and depth, d = 140 mm. In both cases
the results fall closely onto a straight line of gradient unity, indicating that ATz= ¥ aver
the range shown. For (a) AT =4°C, 4 =085 R=0.71 cm and (b) AT = 10°C,
A=087, R<0.64 cm.
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arises because of the effect of radial geostrophic balance on small
radial temperature gradients in the fluid. However, since measure-
ments of the radial dependence of temperature were not available, this
does not allow u.(F; ¢, 1) to be calculated from the temperature field.
However H(F;¢,z,1), can still be estimated from experimental
measurements of velocity. If uc(7;¢,1) is assumed to have a linear
dependence on ¢, then

wlr o, = 22CZ=00,

so that substitution into (11) and integration over the limits in (5) gives

He(F 6, 1) = pCpAuy(F, z=0; t)Fd [&T¢(F, z=0; r*

2n 3
Ll
+f T'(F 2=0; ¢, :)qs:.qu], (20)

assuming that the angular half-width of the barrier s<m. As before,
put AT, ~ATg and [T'(F,z =0;¢,1)¢d¢ can be calculated from
the thermocouple ring measurements, T(F,z = 0;¢,1). The Au, was
estimated from experimental velocity measurements.

As the measurements of v were perpendicular to the flow in the 7-
circulation, they can only arise from the {-circulation, Figure 11 shows
plots of v against {1, from where it can be seen that

|v] = 0.02Q cmsec™ at AT = 4°C,

and

' at AT =~ 10°C.

[v] = 0.036 cm.sec™
Using the equation for incompressible flow (V - u = 0), and making
use of the fact that w<u, v,

la(m) 1dv il av uep, 2, 1)
r ar +F3_¢%0'=>NN r a¢dr+ L4 ‘
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FIGURE 11 Plots of (a), (c) maximum positive v against £, (b), (d) maximum negative

v against £, for (a), (b) AT = 4°C and (c), (d) AT = 10°C. Also plotted are solid lines
showing (a), (b) v = 0.212 mm.sec™ ', and (c), (d) v = 0.3 mm.sec™ "

It suggests that

i 1 0.020Q 0110
Auy(AT = 4°C) = e (b—a) = —
and
. 1 0.0302 0.1752
Auy(AT = 10°C) = S (b—a) = P
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Thus (20} can be written

0.11pC,ATs0 | 0.115C, f :
12 a2 T'éde,

175C £,
0 |?pc],,;£xr5 d 017pcpﬂd f .

H(F, AT = 4°C; 6, 1) =

H.(7, AT = 10°C; 6, 1) =

(2n)

Estimates of the error in H. were obtained by taking the steepest
and shallowest slopes of the linear fit used to describe |v| in Figure 11;
these gave an error of 15% when A T=4°C and 17% for A T= 10°C.
It should be noted that since the maximum positive and negative
values of v have been used, (21) is more likely to be an over estimate of
H, than an under estimate. Clearly if a possible overestimate of H is
unable to account for the discrepancy between H, and the measure-
ments (H,q,) then some additional mechanism for heat transport is
required. Values for H¢(F; ¢, 1) are plotted in Figure 12, along with the
heat advection contributions of the n-circulation, and the total
advective heat transport as measured by the experiments. Now H
corresponds to heat transport in the same direction as H,, though as
can be seen, over all rotation rates, the estimates of H, contribute
significantly less to the total heat transport than /.

The estimates of fluid heat transfer by the (-circulation were made
on the basis that it was independent of =, which represented a useful
simplification for the theory that followed. Figure 6 suggests that this
is perhaps an over-simplification, however as the calculations above
indicate, the strength of the {-circulation coupled with the magnitude
of the azimuthal temperature gradient in the fluid show that it
transports much less heat than the g-circulation, This result seems
unlikely to be significantly altered by using a more complex velocity
profile for the (-circulation in the above theory.

4.5. Heat Advection by Small Scale Eddies

The heat advection by the small scale eddies is given by (12). As
u'(F; ¢, z, 1) could not be measured for 2 {z} 3.0 rad.sec” !, due to the
limitations of the velocity measurement apparatus, all that could be
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FIGURE 12 Plots showing the heat port contributions for the insulating barrier.
Heat transport contributions have been culculated for; lh: n-circulation, f,, using (15);
the (-circulation, K, using (21); and Hu using (22). How = Hy + H; + Hy.
Experimental of the ad heat Hyyy are ﬁhown for
comparison. (a) AT=4"C, (b) & T'=10°C. The lines serve o:nly as a guide to the eve.

done was to estimate the order of magnitude of H'(F; ¢,z 1) when
eddies were present. Another problem was that velocity and
temperature measurements could not be made simultaneously, so that
it was not possible to correlate the velocity and temperature
measurements for the eddies. Figure 7(c) can be used to estimate the
radial velocity shear with ¢ of an eddy as Aug~0.84 mm.sec”' at
=30 radsec™' and AT=10°C. At the same values of €2 and AT
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perature ements gave the difference between the maximum
and minimum values of T (eqn. 6), AT’ as 0.530°C. Also as the eddy
in Figure 7(c) only occupies about one-fifth of the azimuth, é¢ ~ 27/5.
So that the maximum amount of heat the eddy could carry (if 1’ and
T' were suitably correlated) would be

5 2
H'(F; 6,2, 1) ~ pC,MupAT'Td - = 17 wats.

Comparison with Figure 12 indicates that the eddy was not carrying
that much heat, suggesting that ' and T were not well correlated in
this case. However the calculation does indicate that eddies can carry
significant amounts ol heat, and suggests that the eddies might be
responsible for the increase in Nu seen in Figure 3(b), which does seem
to occur for €2 = 1.6 rad.sec™', which is the same as the transition for
the onset of the small scale eddies at AT~ 10°C.

In an attempt to explore the heat advection by eddies a little further,
(13) implies that

1
W(F oz, 1) = ;!—:: ; %[F. z = 0;¢,t)dz + @(F; @, 1),
where ii(F; ¢, 1) is non-linear in ¢. Now H'(F; ¢, z,1) is given by (12).
Though the mechanism for #(F; ¢, t) remains unknown, it is-possible
to write

H'(F ¢z, 1) = Hy (7 p, 2, 1) + HY(F ¢, 2, 1),
where
Ll S !
Hy(Fi ¢z 1) = PCF_/ f £ BT (F,z=0;0¢,t)dz

207
[T(F ¢,z 1) - ]d..l a‘q}.

Substitution from (6) for T'(F; ¢, =, 1), and integration over ¢ using
the limits given in (5) gives, using AT .= AT,

ﬁl‘f}, gaATd> [# E}T'

240 (A (1, z=0; ¢, t)do. (22)

Hy(F; ¢, 1) =
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Values of H(F: ¢, 1) were calculated by integrating 87"/8¢ around
the thermocouple ring, and are plotied along with the other heat
transport contributions in Figure 12. It can be seen that the values of
H{ are rather small, and probably form only a tiny part of
H'(F; $,z,1). Equation (13) indicates that H| is the correction that
should be applied to (14) to allow for variations in the strength of the
r-circulation with ¢ due to non linearities in 87/d¢. As H{ is so small,
clearly such corrections are not very important. Consequently it
appears that the important contributions to u'(F; ¢, z, f) are made by
it(F; ¢, ), an idea that is supported by Figure 7(c) which shows
u(F; i, z,1) to have a much stronger dependence upon ¢ than on z in
the region of the eddy.

5. CONCLUSIONS

Section 3 gives a summary of the experimental results. It seems that
the flow pattern observed may be regarded as a superposition of two
circulations (see Section 4), the 5 and (-circulations, plus small scale
eddies at higher rotation rates.

Theory suggested that at r = F the r-component of the velocity for
the n-circulation could be described by (14). Physically this represents
a balance between the Coriolis force and an azimuthal pressure
gradient supported by the barrier. The pressure drop across the
barrier is associated with the temperature drop AT Heat advection
by the n-circulation is described by (15). At values of £ less than
3.0rad.sec”! for AT = 4°C, and over a larger range when AT = 10°C
the heat advection of the r-circulation gives a good approximation to
the heat advection measured in the experiments. This appears to
correspond to the case when the (-circulation and the small scale
eddies transport little heat so that only the n-circulation contributes
significantly to the heat advection by the fluid. In this range (19)
provides a diagnostic equation that links the heat advection to ATy
through experimental parameters and fluid properties. Thus there is
strong evidence that suggests that the n-circulation is correctly
parameterized by (14) and (15) and described by the physical
mechanism described above.
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Further, (17)—(19) provide a set of empirically based diagnostic
equations that link the heat advection to ATy in a similar fashion,
over the whole range of £ covered in the experiments.

Velocity measurements have allowed the heat advection of the (-
circulation to be estimated by (21). Estimates of heat advection by
small scale eddies suggest that they may play a significant role in heat
advection when present.

Figure 12 shows the heat advection contributions of the various
processes described above. While these mechanisms do seem to
account for the bulk of the measured heat advection, there are still
regions where the discrepancy is greater than the error bars. At the
very smallest values of {2 this may be because geostrophic balance in
the ¢-direction is no longer valid, so that (13) is no longer appropriate.
At large values of £ it seems likely that eddies will play an increasingly
important role in heat advection. However a weakness in the theory is
that T /8¢ has been assumed to be independent of =, and AT. has not
been measured at all, this may also be the cause of the less good
agreement at smaller values of €. A further consideration is the
possible contribution to heat transport by flow in the boundary layers
that form on the sides ol the barrier, such boundary layers will be
highly non-geostrophic and as no boundary layer measurements were
taken, have not been considered in the current work.

Despite these problems there is sufficient agreement between the
theory and the measurements to suggest that the mechanisms keeping
the heat advection (and therefore Nu) close to its non-rotating value
over the range of {2 are as follows.

At low to medium rotation rates (f2 < 3.0 rad.sec ™' at AT = 4°C,
and © < 4-5 rad.sec™! at AT = 10°C) heat is advected mainly by the
n-circulation, at a rate which is independent of 2 so long as ATz
[see equation (15)). This corresponds to the case suggested by Hide in
the Appendix and given in equation (1), where the force on a fluid
particle due to the azimuthal gradient of the dynamic pressure field
balances the Coriolis lorce on the particle, so that radial fluid motions
occur with their accompanying heat advection. The heat advection by
the (-circulation is insignificant as ATp is rather smaller than
AT.~AT and because uc(F; ¢, t) is small at small 2. At higher values
of €1, the (-circulation plays an increasingly important role in heat
advection, but it always transports less heat than the n-circulation. The
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contribution of the n-circulation begins to decrease once ATy stops
increasing with £ (see Fig. 2). It is not clear why ATy should stop
increasing with §2 at the value it does, except that the maximum ATg
permissable must be < AT. However heat advection by the 5 and (-
circulations is unable to account for the total measured heat advection
of the fluid at all rotation rates. Because no other processes appear to
be present in the fluid, and because eddies may be able to transport
significant amounts of heat (as Section 4.5 shows) it seems likely that
the remainder of the heat may be transported either by the small scale
eddies, or else by the non-geostrophic boundary layers by the sides of
the radial barrier,

A consequence of the conclusions relating to the n-circulation [see
equation (16)] is that by imposing a temperature difference across the
barrier it should be possible to control the 5-circulation. A variation
on this idea was attempted by Rayer (1995) who replaced the
thermally insulating barrier with a thin copper thermally conducting
barrier in the hope that this would reduce ATp However measure-
ments showed that ATy and the fluid heat transfer were largely
uneffected, suggesting the formation of signficant boundary layers to
the sides of the thermally conducting barrier, which were able to
support the temperature drop.

Regarding the eddies, Figure 12(a) shows that no significant heat
advection is required of them until 22~ 3.0 rad.sec™" at AT=~4°C (ie.
when ATy stops increasing with £), yet the eddies first appear at
0= 1.2 rad.sec”'. However eddies cannot transport heat effectively
until T'(F,z = 0; ¢, 1) becomes significant. Figure 1(a) shows that
even at £ = 1.9 rad.sec”', T' is very small because the thermocouple
ring data, T(F,z = 0;¢,¢) is still closely linear. The values of AT"
calculated for AT~4°C plotted in Figure 13 show that AT increases
rapidly between (22 2.5 rad.sec”' and 3.0 rad.sec™'. This suggests that
although the eddies first appear at much lower rotation rates, it is
appearance of the temperature perturbations in the thermocouple ring
data, T(F,z = 0;¢, 1) [see Fig. 1(a)]; that allows them to transport heat
effectively. These temperature perturbations start to appear at about
the same values of {1 as those at which ATy stops increasing with 2.

The values of 2 and AT for which u=u, are those for which all
significant heat advection is due to the s-circulation, i.e. Hygy = H,,. In
this case Nu (25 0) = Nu(2 = 0) because = uy = u,. In other words
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FIGURE 13 _ Plotof AT against £2 for the results with the full insulating barrier, For
AT’ see Section 4.5. The solid diamonds are the A T=54°C results and the crosses, the
10°C results, AT increases rapidly around 2,5 rad.sec™ ",

an azimuthal pressure gradient supported by the radial barrier allows
the fluid flow to be the same when 0270 as when £ = 0 [see eqn. (1)],
as a consequence the fluid heat transport is independent of 0 and
equal to the 2 = 0 value. This is in agreement with Hide’s hypothesis
[eqn. (1)] which appears to hold for 2 < 3.0 rad.sec™ at AT = 4°C
and for Q! < 4-5rad.sec”' at AT = 10°C. However at higher values of
€2, even though u # up, Nu remains close to Nu(f2 = 0) due to other
motions occuring in the fluid.
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APPENDIX: SOME THEORETICAL
CONSIDERATIONS BY R. HIDE

The experiments described above extend other work along lines
indicated by theoretical considerations of effects of Coriolis forces due
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to general rotation on buoyancy-driven flows in cylindrical containers
of various shapes (cf. Hide, 1968). In general Coriolis forces affect not
only the (Eulerian) field of relative flow u(r,f) but also fields of
pressure p(r, 1), density p(r, #), etc. (where ¢ denotes time and r is the
position of a general point R in a reference frame attached to the
apparatus, which rotates with steady angular velocity £ relative to an
inertial [rame). But there are certain special cases, characterized by the
topology of the boundaries, in which rotation affects p(r, £) and p(r, 1)
in such a way as to leave u(r, /) unchanged or when the changes are
small. For further details of the following discussion see Hide (1997).

Consider an incompressible fluid of uniform chemical composition
in which the density

plr, 1) = a1 + 6(r, )], (A1)
where p is the mean density, depends only on temperature 7°(r, t); thus
0(r,1) = —a[T(r, 1) - T, (A2)

if & is the thermal coefficient of cubical expansion and T the mean
temperature. For such a fluid the respective equations of mass
conservation, momentum and heat transfer are the following:

Vou=0, (A.3)

% +20xu=~V(P+ V) + 8VV+ 0V, (Ad)

where D/Dt = &t +u .V, P(r,i)=p(r,)/p, v is the coefficient of
kinematic viscosity and —VV the acceleration due to gravity plus
centrifugal effects and

‘-;i: 7 (A.5)
where # is the coefficient of thermal diffusivity (x pc being the thermal
conductivity if ¢ is the specific heat) and gpca is the diabatic heating
rate due to any internal thermal sources that might be present within
the fluid. When V and ¢ are specified ab initio, (A.1) to (A.5) suffice
with the appropriate thermal and mechanical boundary conditions to
determine the six independent variables P,8, T and the three
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components of u, all in general functions of r and r. There may of
course be multiple solutions of these essentially nonlinear equations,
for which there are in general no uniqueness theorems.

Equation (A.4) expresses the instantaneous balance of forces acting
on the element of fluid of unit mass at the general point R. The
corresponding balance of torques expressed by

3—? — ((£ + 2Q).Viu — vVE = VV X V0 (A.6)
(where £ = V % u), obtained by taking the curl of (A.4). A “baroclinic”
fluid is defined as having density variations on level surfaces, in which
the right-hand side of (A.6) is not zero and hydrostatic equilibrium
(i.e.. u = 0 everywhere) is impossible. When, by contrast, VF'xVf = 0
everywhere, the fluid is said to be “barotropic™; then there are no
torques exerted by buoyancy forces and (in the absence of relative
motion between different parts of the boundary surfaces) hydrostatic
equilibrium becomes possible.

Equation (A.6) leads directly to the useful expression

22=(ZQ+§}-?E-WA.?VX VO +uV.VE, (AT)
Dy D

where A = A(r, 1) is any continuous and differentiable scalar quantity
and the pseudo-scalar

0=(20+&).VA (A.8)

is the so-called “Ertel potential vorticity™, In the important special
case when A = 6 and v = x = ¢ = 0, the quantity 0'=(2Q + E).V#
is conserved on a moving fluid element, for then, by (A.5) and (A.T)
DQ'[Di = 0.

Let (ug, Py, g, etc.) be solutions of (A.3) — (A.5) when £ = 0 and
(ug+ uy, Py + Py, 6y + @), etc.) when £2 3 0. Direct substitution shows
that u; = 0 when ©+£0 (but gravity g=-VV; is so strong that
centripetal effects make a negligible contribution to V") if the
following conditions are satisfied eveywhere:

2(Q.V)u, = gxVé, (A9)
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and
Z.Q.xun=—VP|+g5‘|. (AIG)

Suppose now that € and g are antiparallel vectors Ok and — gk
respectively, where K is a unit vector in the direction of increasing z
(say). When integrated around any continuous closed curve C in a
plane where = is constant that lies everywhere within the fluid,
Equation (A.9) gives

mﬂ}(uo.dc=~gﬁ.){ve1xfk, (A1)
dz Je c
Correspondingly, (A.10) gives
mﬁ.){uuxdc:myu}(ve].dc:ﬂ, (A.12)
IS c

since #, must be single valued (cf. Hide, 1958; Hide and Mason, 1970;
Hide er al., 1994).

Figure Al illustrates the meridional circulation produced by
buoyancy forces in a fluid annulus when the temperature T, of the
outer wall exceeds that of the inner wall 7,. As in the analogous
source-sink flow in a barotropic fluid (see Hide, 1968, Fig. la) it is
possible in this case to find circuits C for which (A.12) is not satisfied,
such as circles concentric with the axis of the system, implying that u,
cannot be a solution when €5 0. In this case Coriolis forces inhibit
meridional overturning, thereby reducing advective heat transfer, and
they induce a flow u, in the azimuthal (¢) direction. In average
magnitude, this flow increases linearly with £ when 2 is small and
decreases as €2 ' when (1 is large, implying that a maximum value is
attained at some critical value of £2. Coriolis forces also promote non-
axisymmetric “baroclinic instability” at sufficiently high values of 0
(in excess of the abovementioned critical value). This leads to “sloping
convection” (Hide, 1958; Hide and Mason, 1975) which enhances
advective heat transfer to a level in excess of that associated with
axisymmetric flow, but still less than in the case when £2 = 0.

Now consider a case when the meridional cross-section of the
annular apparatus is blocked by a thin impermeable radial barrier [see
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FIGURE Al Illustrating the meridional cirulation induced in a non-rotating annulus
subject to an imp d horizontal T gradient (in the case when the outer

cylinder is hotter than the inner cylinder, i.e. T, > T,).

Fig. 8, the analogous source-sink arrangement in a barotropic fluid
being illustrated by Fig. 2(a) of Hide (1968)]. The cross-section of the
apparatus is now topologically simply-connected, rather than doubly-
connected as when the barrier is absent, and it is possible to find
circuits C for which (A.11) is satisfied. This implies that uy might be a
solution when £25#0, and that if such a solution exists it would be
accompanied by additional fields of pressure P, and density 8, with
gradients in the ¢ direction only satisfying (A.9) and (A.10). Such
gradients could now be supported owing to the presence of the barrier,
across which jumps of P; and #;, would occur.
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This hypothetical theoretical case is not expected to occur in
practice, except perhaps at fairly low values of (2, but its properties are
useful as a guide to systematic experimental investigations, such as
those presented in the main part of this paper. Theoretical considera-
tions along the lines presented above were first used in the
interpretation of observed flow patterns and heat transfer determina-
tions in experiments with the annular system without a radial barrier
(Hide, 1958). They also provided the qualitative basis of my
hypothesis that the insertion of a radial barrier would increase
advective heat transfer, possibly to the level corresponding to (@ = 0,
in favour of which there is now ample evidence (Bowden, 1961;
Bowden and Eden, 1968; Rayer, 1992 and the main body of this paper)
from experiments carried oul in my laboratory. The range ol € over
which heat transfer is found to be the same as for £2 = 0, is so large
that it cannot be accounted for without invoking, in addition to a
circulation in meridional planes, a motion u, with horizontal
components, seen in the experiments, which must make an increasing
contribution to the heat transfer H as {1 increases (see Fig. §).

It is customary in fluid dynamics to measure total heat transfer / in
terms of the dimensionless Nusselt number, Nu defined as the total
heat transfer H divided by that which would occur by conduction (and
radiation) alone if the fluid were replaced by a solid with the same
thermal properties (see e.g. Prandtl, 1952; Hide, 1958). By gencral
considerations based directly on the governing equations and
boundary conditions, or on dimensionless analysis above, suffice to
show that

Nu = Nu(©, 11, 4), (A.13)
in which

o = 8alTh = Tuld

Qb — a)’ (A-19)
(Hide, 1958);
402(h —a)®
TE— (A.15)
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(Fowlis and Hide, 1965);

v
= = (A.16)

the Prandtl number; and the parameter
A= Al(b—a)/(b+a),(b—a)/d] (A7)

depends only on geometrical quantities b, a, and 4.

The significance of © and 7 emerged from wide-ranging experiments
on thermal convection in a rotating fluid annulus as the independent
parameters that inter alia (together with II and 4 to a lesser extent)
largely determine which of a rich variety of axisymmetric and non-
axisymmetric flow regimes will occur. The more familiar Grashol
number

ga|Ty — T,|(b — a)’

wl

G= (A.18)
equal to II times the equally-familiar Rayleigh number, is not to be
regarded as an independent parameter here, for G = &7, but it is
significant that Nu = 0.4G'* (see Prandtl, 1952) when Q = 0.

Another theoretically important quantity which, like Nu, can be
measured in a fairly straightforward way and whose dependence on
the parameters ©, 7, II, and A deserves further study, is the
meridionally-averaged jump in the temperature across the radial
barrier, here denoted by AT, and conveniently expressed in terms of
the dimensionless parameter

AT,
g 1A%

= A.19
|Th_Ta| ( )

As with the Nusselt number Nu, general considerations suffice to show
that

n=n(8,1II,1, 4). (A.20)
Equivalent to (and more convenient than) (A.20) is the relationship

n=n(@/), (A21)
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where (2" is some “scale angular speed of rotation”, to be determined
by theory or experiment.

It can be argued that the dependence is linear when /2" < 1 and
that when ©/0" > 1, owing to the requirement that isotherms be
conserved, 7 tends asymptotically to a constant value less than unity.
If the variation of n with £2/02" is monotonic then it must have the
general form illustrated in Figure A2.

As expression for 2" can be deduced by applying (A.9) in the case
when Q<. Thus, if 2QAU,/d is a measure of the average
magnitude the radial component of (2€2- V) uy, then

2r(b 4+ a)AUy
T 3y ol i i
Tt SR
(when © < ©1*), so that
¥ — Mgal?}, — Tuld (A,33)

= (b + a)AU,

which could, in principle, be related to I, 4 and G. Here we have
included the extra parameter M, the number of equally-spaced thin
barriers in cases when M # 1.

1.0

1
n/a* 1.0

FIGURE A2 Schematic dependence of 5 on 02/ 0" (see text).
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It is not yet possible to predict the exact form of 5(2/ Q) over the
whole range, but the following considerations of the relative potential
vorticity

c=E.Vd (A.24)

are probably relevant. In the terminology of (A.9), (A.10) etc., we
write ¢ = og + o, where

oy = &V (A.25)
and
o =£,. V0 +E-Vo +E,-V6,. (A.26)

In the absence of rotation (i.e., when 2 = 0) not only are oy = & =
V8,=0 by definition, but so is oy equal to zero because ug lies
everywhere in meridian planes and # depends on meridional
coordinates, but not on ¢, the azimuthal coordinate. The extent to
which the vorticity vector £ remains perpendicular to V8 when Q#0
should be investigated, for it is clear by inspection ol Figure 8 that the
meridional and horizontal circulations make contributions of opposite
sign to o. Equilibration might be characterized by the cancelling of
these respective contributions, a hypothesis which could guide to
future laboratory and numerical investigations, in which the ratio T'
(say) of the magnitudes of these two contributions to o could easily be
determined.

Important results have already been obtained from systematic
laboratory studies of annular systems with and without radial barriers,
and also with related triply-connected non-annular systems (unpub-
lished), but much more remains to be done if’ the full potential of such
work is to be realized. Obvious difficulties are presented by the number
of independent parameters to be covered. Some mitigation of these
difficulties is offered by the material presented in this Appendix.



